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In Phys. Rev. B 80, 235120 �2009�, M. G. Silveirinha criticizes our work on Poynting’s theorem and energy
conservation in systems with bounded media �EPL 81, 67005 �2008��, especially with regard to our argumen-
tation toward S= 1

�0
�E�B� as a generally valid energy flux vector. We fully rebut the criticism, point out that

it is based on undue comparison, clear up some misunderstandings and show that Silveirinha’s approach is
rather a restricted than a general one.
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In our Letter,1 we establish that

Se =
1

�0
�E � B� �1�

is a purely electromagnetic energy flux vector �Poynting vec-
tor�, which constitutes together with the electromagnetic
field energy density

Ue =
1

2
��0E2 +

1

�0
B2� �2�

and the dissipation −jE a universally valid energy conserva-
tion law �Poynting theorem�,

�

�t
Ue + div Se = − jE , �3�

in which all quantities are well defined and have a clear
physical meaning. We also point out problems that exist with
the historical form of the Poynting vector,

S = E � H , �4�

when general �realistic� media properties are considered. �In
absence of magnetization, of course, both variants coincide,
since H= 1

�0
B in this case.�

In Ref. 2, a “macroscopic Poynting vector” is derived
together with other quantities in a composite medium, which
the author eventually finds to coincide with “usual textbook
formulas.” Comparing his findings to ours, he blames our
work for “erroneous conclusions,” “unsubstantiated claims,”
and “fundamental misconceptions and mistakes.”

We will show here that there are rather misunderstandings
and mistakes from the author’s part, and take the chance to
clarify things from our perspective. We need to proceed care-
fully because the author’s notion of several terms is different
from ours. We underline that our results do not contradict
classical textbooks,3,4 but rather extent and concretize their
accounts. The warnings contained in these books concerning
the validity of Eq. �4� seemingly have been largely over-
looked.

Our approach1 starts from a consideration of the system
under study as a classical ensemble of charged pointlike par-
ticles which are subjected to Newton’s laws of motion and
are in interaction with physical electromagnetic fields E, B
governed by Maxwell’s equations and the Lorentz force law.
This constitutes a fundamental and purely axiomatic basis
for the theory. Its quantum-statistical generalization is
straightforward and leads to identical relations for the expec-
tation values. The author of Ref. 2 interprets this as a “phe-
nomenological model,” an interpretation which we strongly
reject.

Matter may be arbitrarily complex, but it will always be
possible to decompose it into an ensemble of charged par-
ticles. This way, there is neither a need to describe the prop-
erties of matter, nor to consider medium boundaries, to es-
tablish proper boundary conditions or even to find a proper
definition of where the boundary of a medium in a micro-
scopic picture lies.

The electromagnetic fields E, B in our approach are not
averaged in any sense, neither spatially nor temporally �ex-
cept for the quantum-statistical expectation value being
taken�, and are always given in the space and time domains.
Here, our notion of the term “microscopic fields” differs
from that of the author, in which they are result of a “ho-
mogenization of the first level.” Macroscopic fields in the
sense of, e.g., Jackson3 �spatial averaging using a phenom-
enological convolution function� are not employed at all in
our approach.

In Ref. 2, the author imposes several important restric-
tions on his approach right from the start: time harmonic
fields, temporal homogeneity in the system �and especially of
the dielectric properties of the medium�, periodicity in the
material’s structure, no presence of medium boundaries �i.e.,
infinite bulk media are assumed� and complete absence of
dissipation. Medium properties are considered in an effective
�i.e., homogenized� picture instead of a microscopic one.
Spatial dispersion in bulk is discussed, but spatial inhomo-
geneity �spatial dispersion in bounded media� is not. In con-
trast, none of these restrictions apply to our theory of the
energy flow.1

Consideration of spatial inhomogeneity, however, is abso-
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lutely necessary for an analytically strict description of sys-
tems with media boundaries due to the breach of transla-
tional invariance in these systems. It is impossible to
describe them microscopically by a dielectric function whose
spatial dependence is of the form ��r�, as the author does,
which is rather that of a spatially homogeneous system �thus
with an unbounded, bulk medium�. Instead, a nonlocal func-
tion ��r ,r�� is needed. Obviously, our notion of the term
“nonlocal function” differs from that of the author, who em-
ploys it for the Fourier-transformed form ��� ,k�.

In Ref. 1, we consider spatially and/or temporally inho-
mogeneous systems. At this level of universality, Fourier
transformation of � to wave vectors k or to frequencies � is
not possible. The convolution structure that arises in the re-
lation for the displacement field,

D�r,t� =� d3r�dt���r,r�,t,t��E�r�,t�� , �5�

is a major obstacle for the description of light propagating
through bounded media. Nevertheless, we were able to de-
rive some fundamental relations and laws for such
systems.5–7

We define the “electromagnetic Poynting vector” to be the
purely electromagnetic energy flux vector Se, Eq. �1�, that
appears in the energy conservation equation, Eq. �3�, which
we derive from the Newton-Maxwell-Lorentz equations
within a handful of algebraic manipulations only.1 In con-
trast, the historical form, Eq. �4�, which is also called the
“Abraham” form,8 does contain mechanical energy contribu-
tions from the movement of carriers induced in the matter
�bound currents�, as is pointed out in our Letter and sup-
ported by Ref. 8. The definition of “Poynting vector” in Ref.
2 is unclear in that the derivation starts from an “assump-
tion” for the “microscopic Poynting vector.”

The author claims that the “correct” form for the macro-
scopic Poynting vector is

Sav =
1

2
Re�Eav � Hav� , �6�

similar to the Abraham form, and states that our Letter
claims that Eq. �6� “does not apply for media with artificial
magnetism.” However, we did not make any statements
about a Poynting vector constructed from averaged time har-
monic fields in bulk media. We also note that there is no

single “correct” form, as is pointed out nicely in Ref. 8. The
choice is open and may depend on the system considered, the
quantities of interest and the calculations to be made. How-
ever, it is to be kept in mind that each energy flux vector
makes part of an energy continuity equation, whose other
constituents are the energy density and a possible dissipation
term. In Refs. 1 and 8, it is explicitly demonstrated how to
construct different energy flux vectors and consistent energy
conservation laws. Note that according to the choice of the
energy flux vector, the energy represented by it and, hence,
its physical meaning will also change.

The energy density belonging to the Abraham form of the
energy flux vector cannot generally be given analytically,
because it is mathematically not generally possible to con-
struct an energy density whose time derivative is the corre-
sponding term

EḊ + HḂ , �7�

which appears in the energy continuity equation.1 This is the
case, e.g., for spatially or temporally inhomogeneous sys-
tems, see Eq. �5�. Citing Landau and Lifshitz:4 “In a dielec-
tric medium without dispersion… this quantity �Eq. �7�� can
be regarded as the rate of change of the electromagnetic en-
ergy U= 1

2 ��E2+�H2�. . . In the presence of dispersion no
such simple interpretation is possible. Moreover, in the gen-
eral case of arbitrary dispersion, the electromagnetic energy
cannot be rationally defined as a thermodynamic quantity.”
Or, citing Jackson:3 “�The assumptions of a medium without
dispersion and loss� really restrict the applicability of the
simple version of Poynting’s theorem to vacuum macro-
scopic or microscopic fields.” This incompleteness is the
main reason for our advice that Eq. �4� should not be con-
sidered a generally valid energy flux vector.1 Notwithstand-
ing, one may find assumptions and restrictions that eventu-
ally allow for the careful construction of such U even in
presence of dispersion and dissipation, see examples in Refs.
4 and 3. What the author develops in Ref. 2 is one of these
restricted solutions.

Under these circumstances, the approach of Ref. 2 should
not be called a “completely general” “microscopic” “first-
principles” approach. We do not put the author’s derivation
up for debate—it has to be regarded under the respective
assumptions and restrictions—but we emphasize that none of
our results are invalidated.

*felix.richter2@uni-rostock.de
1 F. Richter, M. Florian, and K. Henneberger, EPL 81, 67005

�2008�.
2 M. G. Silveirinha, Phys. Rev. B 80, 235120 �2009�.
3 J. D. Jackson, Classical Electrodynamics �Wiley, New York,

1999�.
4 L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous

Media �Pergamon, Oxford, 1960�.
5 K. Henneberger, Phys. Status Solidi B 246, 283 �2008�.
6 F. Richter, M. Florian, and K. Henneberger, Phys. Rev. B 78,

205114 �2008�.
7 K. Henneberger and F. Richter, Phys. Rev. A 80, 013807 �2009�.
8 P. Kinsler, A. Favaro, and M. W. McCall, Eur. J. Phys. 30, 983

�2009�.

COMMENTS PHYSICAL REVIEW B 82, 037103 �2010�

037103-2

http://dx.doi.org/10.1209/0295-5075/81/67005
http://dx.doi.org/10.1209/0295-5075/81/67005
http://dx.doi.org/10.1103/PhysRevB.80.235120
http://dx.doi.org/10.1002/pssb.200880349
http://dx.doi.org/10.1103/PhysRevB.78.205114
http://dx.doi.org/10.1103/PhysRevB.78.205114
http://dx.doi.org/10.1103/PhysRevA.80.013807
http://dx.doi.org/10.1088/0143-0807/30/5/007
http://dx.doi.org/10.1088/0143-0807/30/5/007

